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1,3-Dipolar cycloadditions of isatins, benzylamine and benzylideneacetones were studied to prepare a series of novel spiropyrroli-
dine-oxindoles — 4'-acetyl-3',5'-diarylspiro[indoline-3,2'-pyrrolidin]-2-ones and 3’-acetyl-4’,5'-diarylspiro[indoline-3,2’-
pyrrolidine]-2-ones in good yields of up to 94% and with good regioselectivities. Regioselectivities are reversible by the addition of

water or 4-nitrobenzoic acid, respectively. The substituent effects on the regioselectivity were also investigated.

Introduction

Spirooxindoles are important synthetic targets due to their
significant biological activities and their applications for phar-
maceutical lead discovery. These compounds are the central
skeleton of numerous alkaloids [1-8] and have found wide bio-
logical applications, e.g., as potent pS3—MDM2 inhibitors
[9-15]. Usually, isatin and its derivatives were employed as
starting materials to conduct 1,3-dipolar cycloadditions to yield
spirooxindole core structures [16-20]. Owing to the ease of

preparation, the azomethine ylides generated from isatin with

a-amino acids or amines were frequently chosen as important
1,3-dipolar intermediates to react with various dipolarophiles,
such as o,B-unsaturated esters [21-25], dienones [26,27], o,p-
unsaturated ketones [28-30], unsaturated aryl ketones [31-33]
and electron-poor alkenes [34-39].

Among the studied a,B-unsaturated enones for 1,3-dipolar

cycloaddition, chalcone derivatives are the most widely used

dipolarophiles. Sarrafi and co-workers reported a 1,3-dipolar
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cycloaddition reaction of isatin, benzylamine and chalcone
derivatives [31], and only one single regioisomer was obtained
in high yield, in which the benzoyl group was connected to C-3
of the newly-constructed pyrrolidine. However, unsaturated
ketones with a-hydrogens such as benzylideneacetone, which
have attracted great interest due to their synthetic potential [40-
42], have not been exhaustively studied as suitable dipo-
larophiles for 1,3-dipolar cycloadditions of azomethine ylides to
prepare spirooxindoles yet [43]. Therefore, extensive studies on
the regioselective 1,3-dipolar cycloaddition of azomethine
ylides using simple unsaturated ketones, especially ketones
having a-hydrogens, are highly desirable, to enrich the library
of spirooxindoles and facilitate their biological investigations.

Our group recently reported an unusual regioselectivity when
3-acetonylideneoxindoles were employed as dipolarophiles to
react with azomethine ylides [44]. The structure of the sub-
strate significantly affected the regioselectivity of the 1,3-
dipolar cycloaddition, which allowed the formation of 3-acetyl-
5-phenyl-pyrrolo(spiro-[2.3']-1'-benzyloxindole)-spiro-[4.3"]-
1"-benzyloxindoles in good regioselectivity. Our continued
interest in the regioselective 1,3-dipolar cycloaddition of
azomethine ylides prompted us to further investigate the regio-
selectivity of the 1,3-dipolar cycloaddition using a,B-unsatu-
rated enones. Moreover, we envisioned that the additive might
effectively tune the regioselectivity of a 1,3-dipolar cycloaddi-
tion of azomethine ylide. Herein, we report a three-component
1,3-dipolar cycloaddition of azomethine ylides, generated in
situ from isatin derivatives and benzylamine, with benzylidene-
acetone derivatives in the presence of various additives. It was
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found that the addition of water can significantly improve the
regioselectivity and yield of this reaction [45-48]. More impor-
tantly, the regioselectivity of the 1,3-dipolar cycloaddition of
azomethine ylide was reversed by the addition of 4-nitroben-
zoic acid, which led to the formation of spirooxindoles with
novel substitution patterns (Scheme 1). Accordingly, a series of
novel functionalized 3-spiropyrrolidine-oxindoles bearing an
acetyl group were prepared via this 1,3-dipolar cycloaddition
with up to 94% yield. To the best of our knowledge, the reversal
of the regioselectivity in the 1,3-dipolar cycloaddition of
azomethine ylide induced by the additive is reported for the first
time.

Results and Discussion

Initially, a three-component reaction of isatin (1a), benzyl-
amine (2) and benzylideneacetone (3a) was conducted in
ethanol at room temperature (Table 1). It smoothly went until
completion. Interestingly, the two regioisomers 4a and 5a were
obtained with modest yield and poor regioisomeric ratio
(Table 1, entry 1), which is quite different from the reaction of
chalcone. Generally, only a single regioisomer 4',5'-
diarylspiro(indoline-3,2'-pyrrolidin)-2-one was formed when
using chalcone or dienone as dipolarophiles [20,31]. Presum-
ably, this might be attributed to the electronic and steric effects
of the acetyl group. Therefore, reaction conditions including
various solvents and additives (Table 1, entries 2—-9) were
screened to improve the regioselectivity in this reaction. It
turned out that the addition of triethylamine or the removal of
water by using molecular sieves slightly decreased both the
yield and the regioisomeric ratio (Table 1, entry 2 and entry 3).

exclusively formed, yield 85%
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Scheme 1: Different regioselectivities in 1,3-dipolar cycloaddition of azomethine ylide.
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Table 1: 1,3-Dipolar cycloaddition reaction of isatin (1a) and benzylamine (2) with benzylideneacetone (3a)2.

0 NH,
+ + D
(Lo o
H

1a 2 3a
Entry Solvent? Additive
1 EtOH -
2 EtOH EtsN (0.2 equiv)
3 EtOH 4 AMs
4 EtOH 4-NO,PhCO,H (0.2 equiv)
5 EtOH H50 (5.0 equiv)
6 EtOH H,0 (20 equiv)
7 EtOH EtOH:H,0 (1:1)
8 H,0 -
9 DMF H>0 (5.0 equiv)
10 CHaCN H50 (5.0 equiv)
11 THF H,0 (5.0 equiv)
12¢ THF H,0 (5.0 equiv)

i
conditions )

Ph

Time (h) Yield (%)° Regioisomeric ratio (4a/5a)d
48 72 75:25
72 69 78:22
48 59 76:24
24 33 50:50
24 54 83:17
24 52 76:24
24 50 75:25
72 23 68:32
18 78 84:16
48 56 67:33
24 71 86:14
24 88 86:14

@Unless otherwise noted, all reactions were carried out in sealed reaction vials at rt with isatin (1a, 0.50 mmol), benzylamine (2, 1.0 mmol), benzyl-
ideneacetone (3a, 0.75 mmol), and additives in solvent (5.0 mL). PAnhydrous solvent was used. “Combined yield of isolated 4a and 5a. 9The regio-
isomeric ratio was determined by the isolated yields of 4a and 5a. ®The ratio of 1a/2/3a is 1.5:2:1.

However, the incorporation of 4-nitrobenzoic acid can favor the
formation of regioisomer 5a with a regioisomeric ratio of 50:50
(Table 1, entry 4). Interestingly, the employment of water as an
additive resulted in a significant improvement of the regio-
isomeric ratio and a slightly decreased yield (Table 1, entry 6).
Encouraged by this result, we studied the effect of the amount
of water on the regioselectivity. When the amount of water was
increased to 5.0 equiv, the ratio of 4a/5a could be improved to
83:17 (Table 1, entry 5). Meanwhile, as the addition of water
was further increased (from 5.0 equiv to 1:1, Table 1, entry 6
and entry 7), the regioisomeric ratio dropped slightly and
leveled off. The use of water as a solvent led to a poor yield
with eroded regioselectivity (Table 1, entry 8). Various solvents
with 5.0 equiv of water as an additive were subsequently
investigated. The best regioselectivity was obtained with THF
as a solvent (Table 1, entries 9-11). The amount of isatin is also
important for the yield, and the yield was improved to 88%
when 1.5 equiv of isatin were used (Table 1, entry 12). This
might be due to the instability of the corresponding azomethine
ylides, and an excess of isatin and benzylamine was therefore
needed.

As shown in Table 1 (entry 4), the addition of acid facilitated
the formation of regioisomer 5a, which prompted us to further

investigate the effects of acid additives. We anticipated that the
acid additives might lead to the preferably formation of regio-
isomer 5a, which would provide us an efficient pathway to
prepare the spirooxindoles with this novel substitution pattern.
Thus, the acid additives were examined and the optimization
results are listed in Table 2. To our delight, the addition of
4-nitrobenzoic acid reversed the regioselectivity of this reaction,
and the ratio of 5a/4a was increased from 50:50 to 70:30 with
an improved yield (90%) when the amount of 4-nitrobenzoic
acid increased from 0.2 equiv to 2.0 equiv (Table 2, entries
1-5). Presumably, this might be attributed to the acid, which
accelerates the formation of azomethine ylide. However, a large
excess of acid (10 equiv) has a detrimental effect on the reac-
tion, and the yield of 4a and 5a dropped tremendously to 46%
(Table 2, entry 6 and entry 7). As a result, 2.0 equiv of
4-nitrobenzoic acid proved to give superior results. Various acid
additives were also evaluated. Unfortunately, the corres-
ponding azomethine ylides were not formed as indicated by
TLC, and cyclization was not observed with 2.0 equiv p-TSA
and TFA (Table 2, entry 8 and entry 9). Both the benzoic acid
and acetic acid slightly improved the formation of regioisomer
5a (Table 2, entry 10 and entry 11). Additionally, a cycloaddi-
tion product was not observed with acetic acid as a solvent
(Table 2, entry 12).
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Table 2: 1,3-Dipolar cycloaddition reaction of isatin (1a) and benzylamine (2) with benzylideneacetone (3a) and acid additives?.

0O NH,
N
H
1a 2

Entry Additive Solvent? Time (h) Yield (%)° Regioisomeric ratio (4a/5a)?
1 4-NO2PhCO2H (0.2 equiv) THF 12 33 50:50
2 4-NO,PhCO2H (0.5 equiv) THF 12 69 42:58
3 4-NO2PhCO2H (1.0 equiv) THF 12 62 32:68
4 4-NO2PhCO2H (1.5 equiv) THF 12 79 31:69
5 4-NO2PhCO2H (2.0 equiv) THF 12 90 30:70
6 4-NO2PhCO2H (5.0 equiv) THF 12 75 30:70
7 4-NO2PhCO2H (10.0 equiv) THF 12 46 37:63
8 p-TSA (2.0 equiv) THF 48 trace
9 TFA (2.0 equiv) THF 48 trace
10 PhCO2H (2.0 equiv) THF 12 75 54:46
11 AcOH (2.0 equiv) THF 12 85 69:31
12 - AcOH 48 trace

aUnless otherwise noted, all reactions were carried out in sealed reaction vials with isatin (1a, 0.75 mmol), benzylamine (2, 1.0 mmol), benzylidene-
acetone (3a, 0.50 mmol) and additives in solvent (5.0 mL) at rt. PAnhydrous solvent was used. “Combined yield of isolated 4a and 5a. 9The regio-

isomeric ratio was determined by the isolated yields of 4a and 5a.

A plausible mechanism for the regioselectivity in this transfor-
mation is proposed in Scheme 2. The azomethine ylides gener-
ated from the reaction of isatin with benzylamine has two
potential nucleophilic carbons (6a and 6b) [34], each of which
could add to the electron-deficient B-carbon of benzylidene-
acetone during the cycloaddition leading to two regioisomers
[31]. In the presence of water, transition state A is favored due
to the formation of an intermolecular hydrogen bonding
between water and two carbonyl groups in the reaction
substrates, while transition state B suffers from severe steric
repulsion [45-48]. Presumably, the addition of 4-nitrobenzoic
acid might facilitate the formation of dipole 6b. Similarly, the
less sterically hindered transition state C leads to 5a as the
major product. Further research work on the elaboration of the
detailed mechanism is still underway and will be published in
due course.

Having established the optimal protocol for this reaction, we
next examined the scope of this method with regard to a,p-
unsaturated ketones and azomethine ylides. With the aim of
applying this additive-assisted regioselective 1,3-dipolar cyclo-
addition to prepare two regioisomers in high yields, we tested

two reaction conditions (conditions A: 5.0 equiv H,O as an

additive; conditions B: 2.0 equiv 4-NO,PhCOOH as additive)
for all substrates. As shown in Table 3, the reactions between
benzylideneacetone with the azomethine ylides derived from
isatin 1a—e and benzylamine (2) proceeded smoothly to furnish
the desired products with good yields. The opposite regioselec-
tivities were also observed by using water and 4-nitrobenzoic
acid as additives, respectively (Table 3, entries 1-5). The
substituents on the phenyl ring of isatin exert a mild influence
on the regioselectivities, resulting in slightly lowered yields and
regioseletivities (Table 3, entries 2—5). Next, benzylidene-
acetone derivatives 3a—g were employed to react with the
azomethine ylide derived from isatin (1a) and benzylamine (2).
It was found that the electronic nature of the substituent and its
position on the benzylideneacetone aromatic ring significantly
influenced the regioisomeric ratio. In general, the regioisomeric
ratio with water as an additive is comparatively higher for the
substrates in which the phenyl rings of enones were substituted
by electron-donating groups (Table 3, entries 6, 10 and 11).
When the hydroxy group was introduced to the para-position
on the phenyl ring of enone, the best regioisomeric ratio was
obtained and only one single regioisomer 4k was isolated
(Table 3, entry 11). Surprisingly, the addition of 4-nitrobenzoic
acid only slightly facilitated the formation of regioisomers
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Scheme 2: Plausible pathways for the formation of different regioisomers.
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Table 3: 1,3-Dipolar cycloaddition reaction of isatin derivatives 1a—e and benzylamine (2) with benzylideneacetone derivatives 3a—g2.

Ar
(0] NH, O
X o conditions )l
R o * + ~A e +
Z~N Ar X THF, rt Ry X
Ri R+
H _ _
1a—e 2 3a-g 4a—k
R =H, 5-F, 5-Me, Ar = Ph, 0-HOCgHj,,
5-Cl, 6-Br 2'Py, O-N0206H4,
p-NO,CgHy,
0-CH3CgHyg,
p-HOCgH4
e . Regioisomeric ratio
b 0/.\C
Entry R Ar Product Conditions (A or B) Yield (%) (4a—|/5a—|)d
A 88 86:14
1 H Ph 4a +
aroa B 90 30:70
2 5.F Ph 4b + 5b A 79 74:26
B 92 38:62
A 88 68:32
-M Ph 4c +
’ e o* e B 89 31:69
4 5-Cl Ph 4d + 5d A 69 73:27
B 67 32:68
A 77 2
5 6-Br Ph 4e + 5e 80:20
B 80 24:76
A 86 85:15
H -OHCgH 4f + 5f
° o-OCefla ° B 80 11:89
A 90 81:19¢
- +
! : s 49+ 59 B 84 40:60°
A 92 67:33
H -N H 4h + 5h
° oNO2Cela ° B 85 55:45
A 93 70:30
g i b B
9 H P NOQCGH4 4i + 5i B 84 58:42
10 H 0-CHaCeHy 4]+ 5i A 92 78:22
sve 17 B 93 60:40
A 94 97:3®
1" H -OHCgH 4k + 5k
P o B 82 99:1¢

aUnless otherwise noted, all reactions were carried out in sealed reaction vials at rt with isatin derivatives 1a—e (0.75 mmol), benzylamine (2,

1.0 mmol), benzylideneacetone derivatives 3a—g (0.50 mmol), and additives in THF (5.0 mL) for 48 h. PConditions A: 5.0 equiv H2O (2.5 mmol) as
additive; conditions B: 2.0 equiv 4-NO,PhCOOH (1.0 mmol) as additive. °Combined yield of isolated 4a—k and 5a—k. 9The regioisomeric ratio was
determined by the isolated yields of 4a—k and 5a-k. ®The regioisomeric ratio was determined by 'H NMR of the crude mixture.

5h-5j (Table 3, entries 8—11) and did not yield the reversed
regioselectivities. Notably, the regioisomer 5k was present in
trace amounts, even after the addition of 4-nitrobenzoic acid.
Finally, the structures and relative configurations of the
cycloadducts 4e and 5e were unequivocally determined by an
X-ray crystallographic analysis of a single crystal (Figure 1 and
Figure 2).

Conclusion

In summary, we herein described an additive-assisted
regioselective 1,3-dipolar cycloaddition reaction of azomethine
ylide to synthesize novel functionalized spirooxindoles
in good to excellent chemical yields with good regioselectivi-
ties. Furthermore, the regioselectivity can be conveniently

tuned and reversed by simply adding water or 4-nitrobenzoic
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Figure 1: ORTEP diagram of 4e.

Figure 2: ORTEP diagram of 5e.

acid, which provides a facile approach to access a wide
range of spirooxindole ring systems with novel substitution
patterns.
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